Title: Dating the 1700 Cascadia Earthquake: Great Coastal Earthquakes in Native Stories

Author(s): Ruth S. Ludwin, Dennis, Carver, McMillan, Losey, Clague, Jonientz-Trisler, Bowechop, Wray, and James

Published by: Seismological Research Letters, Vol. 76, Number 2

Publish date: March/April 2005

Disclaimers:

The information and all content provided herein by the Worldwide Indigenous Science Network (WISN) are provided as a service and are for general informational and educational purposes only. Original creator(s) of materials contained herein retain full copyrights. Although WISN uses reasonable efforts to ensure high quality materials, WISN does not guarantee the accuracy or completeness of content. Neither WISN nor any party involved in creating, producing, or delivering this information shall be liable for any damages whatsoever arising out of access to, use of, or inability to use the materials, or any errors or omissions in the content thereof. Users assume all responsibility for the access to and use of these materials.

Translations of any materials into other languages are provided as a convenience, and translation accuracy is not guaranteed nor implied. Users may refer to the original language/official version to ensure accuracy.
INTRODUCTION

Although scientific recognition of the earthquake hazard presented by the Cascadia subduction zone (CSZ) is relatively recent, native peoples have lived on the Cascadia coast for thousands of years, transferring knowledge from generation to generation through storytelling. This paper considers the ways in which information on coastal earthquakes is presented in native traditions and estimates the date of the most recent event from them.

The primary plate-boundary fault of the CSZ separates the oceanic Juan de Fuca Plate from the continental North America Plate (Figure 1). It lies about 80 km offshore and extends roughly parallel to the coast from the middle of Vancouver Island to northern California. Although recognized as early as the mid-1960’s, the CSZ was initially assumed to be incapable of producing great megathrust earthquakes. It is seismically quiet, and no sizable earthquake has occurred on it since European settlement began.

As the theory of plate tectonics matured, studies of subduction zones worldwide identified characteristics associated with megathrust earthquakes. These earthquakes are most common in areas where hot, young, buoyant crust is rapidly subducted (Heaton and Kanamori, 1984).

Although the rate of subduction in Cascadia is relatively slow, the subducted crust is among the youngest and hottest anywhere. Field investigations soon located geological evidence of abrupt land-level changes characteristic of megathrust earthquakes in “ghost forests” of dead cedar trees in coastal estuaries in Washington and Oregon (Nelson et al., 1995). The cedars, originally above the limit of the tides, were killed when their roots were suddenly plunged into salt water. Beneath the surface of these same estuaries, soil cores revealed layered deposits showing a repeated cycle of slow uplift and rapid submergence. Preliminary age estimates based on radiocarbon dating (Nelson et al., 1995) and tree-ring studies (Yamaguchi et al., 1989) suggested that the most recent earthquake happened about 300 years ago. The exact date and approximate time of the most recent CSZ earthquake, 9 PM on 26 January 1700, were determined from Japanese historic records of a tsunami arriving with no reports of associated shaking (Satake et al., 1996). The year was confirmed through close study of tree-ring patterns of ghost cedar roots (Yamaguchi et al., 1997). The magnitude estimate of 9.0 implies rupture along the entire length of the CSZ (Satake et al., 2003). Figure 1 shows the geographic extent of the likely rupture area.

TRADITIONS FROM CASCADIA

At the time of initial European contact, Cascadia native groups spoke more than a dozen distinct languages (Thompson and Kinkade, 1990) and lived in a complex social landscape with both similarities and differences between groups. Collection and recording of native stories began in the 1860’s, more than 350 years after the first European contacts in North America, almost 100 years after initial contact in Cascadia, and nearly 50 years after European settlement began. As a result, as much as 95% of native oral traditions may have been lost (Jacobs, 1962), and available recorded examples may not be a representative sampling of the original material. Storyteller, transcriber, and language and cultural issues all affect the story that ends up in print. Nonetheless, versions of oral traditions are preserved in hundreds of sources, and numerous stories describe shaking or marine flooding. Artifacts, dances, songs, ceremonies, and personal and place names supplement the range of information available for study. We are deeply indebted to the many informants who shared their stories and allowed them to be preserved in written form.

Figure 1 shows source locations for 40 native stories from 32 independent sources. These stories represent less than a third of the known stories that refer to shaking or marine
flooding and were selected on the basis of clarity, descriptions of phenomena notable in megathrust earthquakes, and geographic distribution. Some of these stories have been discussed in earlier studies (Heaton and Snavely, 1985; Clague, 1995; Carver and Carver, 1996; Minor and Grant, 1996; Hutchinson and McMillan, 1997; Losey, 2002; McMillan and Hutchinson, 2002). Figure 2 tabulates story elements and gives date estimates.

Stories referenced in Figures 1 and 2A have been broadly grouped into three time categories: stories from which dates can be estimated, stories that are clearly historical but impossible to date, and apparently mythic stories without any clear timeframes. Historical stories cannot be distinguished from myth by style or content alone, however (story ref. 23, p. ix), and stories that appear to be mythological may be based on historical events. Stories designated as historical in the source texts are identified as historical in Figures 1 and 2A.

Stories vary considerably in content and style along the Cascadia coast. At the southern end, many stories explicitly mention both earthquakes and tsunami. At the northern end, there are explicit earthquake stories and explicit flood stories, but only a few stories including both phenomena. In the middle portion of the CSZ, along the coast of Oregon and Washington, direct mention of earthquakes is rare and stories of marine floods are common. The differences likely result from differences in the collection and preservation of stories, and may also reflect differences in native cultures and lifestyles along the Cascadia coast or variations in earthquake effects.

HISTORICAL TRADITIONS

Nine stories (1c, 3, 4, 6, 7, 13, 17, 27, and 28) have information sufficient for estimating a date range for an event associated with shaking and/or flooding (two stories with both, three with shaking only, and four with flooding only). Two stories tell of a grandparent who saw a survivor of the flood, one of a great-grandparent who survived it. The stories were told between 1860 and 1964. Figure 2 tabulates the accounts and gives estimated date ranges. Date range minima and maxima are 1400 and 1825. All estimates span the interval between 1690 and 1715, and the average value of the midpoints of the date ranges is 1690. Discarding the earliest and latest midpoints yields an average midpoint date of 1701. This is remarkably consistent with the 1700 date of the most recent CSZ earthquake.

The date estimates based solely on descriptions of floods could possibly be reports of teltsunamis (i.e., tsunamis arriving from distant earthquakes). Alaskan and South American earthquakes produced notable tsunamis on the Cascadia coast in the 20th century (Lander et al., 1993). Although the history of Alaskan earthquakes around 1700 is not known, tsunamis from South American earthquakes were recorded in Japan in 1730, 1751, and 1780 (Watanabe, 1998). Japanese earthquakes have not produced significant tsunamis in Cascadia since at least 1806 (Lander et al., 1993), but locally generated tsunami damaged the Japanese coast in 1611, 1707, and 1771 (Watanabe, 1998).

Stories that can be dated are mostly straightforward descriptions of flooding and/or shaking. The exceptions are two stories that date the origin of the Swai’xwe mask and costume (stories 3 and 4, Figure 3). The Swai’xwe represents earth shaking in a northern Vancouver Island ritual (Boas, 1897), where its mythic origin (story 1d) tells of a mask obtained at night in the winter ceremonial house of Red Cod,
where rumbling sounds and earth shaking are caused by fish thrashing about on the floor. Additional sources identify the Swai’xwe as historical and place its geographic origin near the town of Hope (Codere, 1948; Lévi-Strauss, 1979; Carlson et al., 2001) on the British Columbian mainland. The Swai’xwe is considered earthquake-related over its entire geographic range (Lévi-Strauss, 1979), although the shaking element is not prominent in mainland stories. The Swai’xwe is also mentioned in connection with thunder and whirlwind (American Museum of Natural History Catalog, Item 16.1/1871) (story ref. 3 and story 2).

Two of the stories that can be dated include both flooding and shaking elements. The clearest and most complete (story 7) is from the outer coast of Vancouver Island, recorded by Chief Louis Nookmis following the 1964 Alaskan earthquake. It describes a nighttime earthquake quickly followed by a tsunami that destroyed the Pachena Bay people.

They had practically no way or time to try to save themselves. I think it was at nighttime that the land shook. … I think a big wave smashed into the beach. The Pachena Bay people were lost. … But they who lived at Ma:ltsa:s, "House-Up-Against-
Hill" the wave did not reach because they were on high ground. ... Because of that they came out alive. They did not drift out to sea with the others. (Arima et al., 1991)

The published translation cited above (Arima et al., 1991) is slightly garbled and not clear enough to make a date estimate from. Co-author Robert Dennis, Chief Councillor of the Huu-ay-aht First Nation and grandson of Chief Louis Nookmis, working with a new translation of the recordings, has discovered that the original recording did include information that makes it possible to estimate a date for the earthquake and tsunami, placing it between 1640 and 1740. This new information comes from a comprehensive transcription and translation of the 1964 recordings currently being undertaken by the Huu-ay-aht First Nation.

The second story with both flooding and shaking is from the northern margin of the Olympic Peninsula in northwestern Washington and combines information from three independent sources (stories 11–13) to yield a tale indicating winter flooding accompanied by strong shaking.

The stories above are supplemented by a datable story of nighttime shaking from the northern end of Vancouver Island and a tradition that cannot be dated but vividly describes strong nighttime shaking, from a group on the inner coast of southern Vancouver Island (story 8):

In the days before the white man there was a great earthquake. It began about the middle of one night ... threw down ... houses and brought great masses of rock down from the mountains. One village was completely buried beneath a landslide. It was a very terrible experience; the people could neither stand nor sit for the extreme motion of the earth.

The remaining stories that can be dated describe saltwater flooding events. Archaeological evidence indicates that some native villages on the British Columbia, Washington, and Oregon coasts were subsided, flooded by tsunamis, and abandoned following the 1700 earthquake and tsunami (Cole et al., 1996; Minor and Grant, 1996; Hutchinson and McMillan, 1997; Losey, 2002), supporting the possibility that flooding stories may reflect this event.

THUNDERBIRD AND WHALE

Supernatural Symbols to Describe Events Out of the Human Scale

Throughout Cascadia, earth shaking and/or tsunami-like effects are frequently described in stories about the acts and personalities of supernatural beings, often in the guise of animals. Many stories from western Vancouver Island and northern Washington tell of a struggle between Thunderbird...
and Whale, and throughout Cascadia stories about these figures frequently include explicit mention or visual imagery suggesting shaking and/or tsunami-like effects.

Thunderbird and Whale are beings of supernatural size and power. A story from Vancouver Island says that all creation rests on the back of a mammoth whale, and that Thunderbird causes thunder by moving even a feather and carries a large lake on his back from which water pours in thunderstorms (Carmichael, 1922). Shaking and ocean surges can be inferred from the story of Thunderbird driving his talons deeply into Whale's back, and Whale diving and dragging the struggling Thunderbird to the bottom of the ocean (other versions have Thunderbird conquering Whale).

Story 15b, from the northern Olympic Peninsula, includes a side comment that explicitly links earthquake- and tsunami-like effects to the struggle and suggests an historical context:

> My father [father of the medicine man who related this story to the writer] also told me that following the killing of this destroyer ... there was a great storm and hail and flashes of lightning in the darkened, blackened sky and a great and crashing "thunder-noise" everywhere. He further stated that there were also a shaking, jumping up and trembling of the earth beneath, and a rolling up of the great waters.

Stories 5, 9, 14a and b, and 15a further tie the story of a supernatural battle to the flood. Shaking is implied by imagery: Thunderbird lifts the massive Whale into the air and drops him on the land surface. The flood description in story 15a is strikingly similar to that in story 10, which places the event a “long time ago … but not at a very remote period.”

The struggle between Thunderbird and Whale is unique to the Cascadia coast and appears in stories from Vancouver Island to northern Oregon. From central Oregon south, thunder or whale figures appear individually in stories describing earthquake or tsunami themes. The central figures are variously identified as Thunder, Thunderbird, or bird and Whale, fish, or sea monster. In northern California, one tribe has an “Earthquake” figure with “Thunder” as his companion. Stories from Puget Sound and eastern Washington also use these motifs in conjunction with descriptions of earthquake effects. Story 16, describing a battle between a double-headed eagle and a water-monster, is told about the creation of the earth beneath, and a rolling up of the great waters.

Indian Ocean Tsunamis in Legend

The struggle between the worlds above and below is not unique to Cascadia. Similar stories are found elsewhere, and the disastrous tsunami damage around the Indian Ocean brings a new understanding of the local deluge legends in this part of the world. Although we are not very familiar with the literature of this area, the stories below seem to reflect recent events.

Ancient stories from Sumatra say that the Earth rests on the horns of a monster described as a serpent with the horns of a cow (Frazer, 1918). At the beginning of time, the surface of the Earth was primeval ocean where this great serpent swam or lay. The daughter of the highest deity (who dwelt in the heavens and had birds as servants) came down from the upper realm and spread a handful of earth to form the world. The serpent, however, disliked the weight upon his head, and, turning over, caused this newly made world to be engulfed by the sea (Dixon, 1916). To aid his daughter, the deity let a mountain fall from heaven. From this mountain sprang all the rest of the habitable Earth, and the people of the Earth were born from his daughter (Frazer, 1918).

From that time forward, there has been a constant struggle between the serpent and the deity of the upper realm: the monster always trying to rid himself of his burden, and the deity always endeavoring to prevent him from so doing. This is the cause of the frequent earthquakes that shake the world in general and the island of Sumatra in particular. At last, when the monster proved obstreperous, the deity sent his son to tie the serpent. Even fettered, the monster continued to shake his head, so that earthquakes have not ceased to happen. He will go on shaking himself till he snaps his fetters. Then the earth will again sink into the sea (Frazer, 1918).

Ancient stories from Sri Lanka tell of a brilliant civilization that catastrophically sank beneath the waters. Another story tells of a Patala (“Sunken”) Lanka, a Lanka far “underground” where a mighty king's powerful older brother slumbers in repose until the king descends to awaken the sleeping giant and enlist his support in a mythical war being waged upon the surface of Lanka (Harrigan, 1989).

REFERENCES

of Agate Pass, a Puget Sound waterway far from the outer coast but adjacent to the Seattle Fault, where a magnitude 7.4 earthquake caused a Puget Sound tsunami (Moore and Mohrig, 1994) about 1,100 years ago (Bucknam et al., 1992). Although none of the Thunderbird/Whale stories are datable, a few have vaguely historical timeframes.

In addition to describing earthquake effects, Thunderbird and/or Whale stories have a general association with landscape-forming events, such as glacial moraines (story 15b), icefalls (story 14 ref., p. 320), and landslides (Barbeau and Melvin, 1943), and Thunderbird also appears in stories about thunder, lightning, and rain. Thunderbird and Whale stories are part of a systematic oral tradition that used symbolism and mnemonic keys to condense and present information in a format that could be remembered and retold for generations.

Artifacts depicting Thunderbird and Whale sites which long predate the 1700 earthquake have been recovered from coastal archaeological sites (McMillan, 2000), and native populations witnessed multiple cycles of CSZ earthquakes: Geologic evidence indicates at least seven in the last 3,500 years (Atwater and Hemphill-Haley, 1997). Knowledge of a repeating earthquake cycle may be implied in a story where Thunderbird becomes a man and sends his Thunderbird costume back to the sky, saying:

You will not keep on thundering, only sometimes you will sound when my later generations will go [die].
You will speak once at a time when those who will change places with me will go [die]. (story ref. 1, p. 65)

The Thunderbird/Whale motif is the central theme in carved and painted art of the outer coast and coastal fjords of Vancouver Island (Malin, 1999) (Figures 4 and 5), where broad ocean openings funnel water into narrow waterways that run far inland. Port Alberni, at the landward terminus of Barkley Sound, 40 km from the ocean, experienced tsunami runup about six times larger than did sites on the open coast following the 1964 Alaska earthquake (NOAA, 1964). Tsunami deposits from both the 1964 and 1700 earthquakes have been documented in Port Alberni and other fjordlike inlets on Vancouver Island (Clague et al., 2000). Alert Bay, between the northern end of Vancouver Island and the mainland, also has prominent Thunderbird and Whale artwork (Figure 6) and story themes linking Thunderbird and flooding (story 1a), and placing flooding at the time of the winter ceremonial (story 1b).

CONCLUSIONS

Cascadia subduction zone earthquakes are remembered in native stories, art, ceremonies, and names. Date estimates from native historical traditions place an earthquake around 1700, consistent with radiocarbon and tree-ring dating and written Japanese records. Timeless, durable, and ancient imagery describes earthquake and tsunami effects and sug-
gests awareness of repetitive cycles of world-altering events, while common symbols and imagery along the length of Cascadia suggest commonly experienced events.

ACKNOWLEDGMENTS

Thanks to Brian Atwater of USGS; George Crawford of WA EMD; the Olympic Peninsula Inter-Tribal Cultural Advisory Committee, including Chris Morganroth III, Viola Riebe, and Justine James; also Helma Swan Ward, Edie Hottowe, and Spencer McCarty of the Makah tribe and Neah Bay; Kate McCarty of Neah Bay; Astrida Blukas-Onat of BOAS, Inc.; Andy de Los Angeles of the Duwamish and Snoqualmie tribes; Jason Younker of the Coquille tribe and University of Oregon; and Coll-Peter Thrush, John Findlay, Gary Lundell, and Lauro Flores of the University of Washington for their encouragement, suggestions, and background information. This work was initially supported by USGS grant 1434-HQ-96-GR-03166, and subsequently by USGS grants HQ98AG1937, 01HQAG0011, and 03HQGR0039.

REFERENCES

American Museum of Natural History Catalog (1903). Cowichan? mask, Xoaexoe, donated by James Teit, 1903, Item 16/9222A.

STORY REFERENCES (see Figure 2)

14b. Thunderbird causes a flood, 322.

Seismological Research Letters March/April 2005 Volume 76, Number 2 147

20a. The Thunder-bird, 23–27 (similar story identified as historical in the following reference).

20b. The six travellers, 30–34.

20c. The Crow and the Thunderbird, 140.

31b. How the prairie became ocean, 460–465.